Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Vet Ital ; 60(1)2024 04 11.
Article in English | MEDLINE | ID: mdl-38602499

ABSTRACT

In October 2020, the first outbreaks of lumpy skin disease (LSD) in Lang Son Province, Vietnam were reported by our laboratory. The disease had rapidly spread to the South, and it was reported in 55 of 63 provinces and cities of Vietnam by the end of 2021. The most economic loss caused by this disease occurred in the north-central region in 2021 where approximately 46,788 LSD virus (LSDV) infected cattle and buffaloes have been reported and 8,976 animals have been culled. However, the information on this pathogen circulating in this region is missing. Here, we describe the molecular characterization of LSDV circulating in north-central Vietnam in 2021 and early 2022. In total, 155 LSDV samples were collected during this period and three of these samples from each province were further characterized by Sanger sequencing analysis based on three key maker genes (GPCR, RPO30, and p32). Sequence comparison and phylogenetic analysis based on GPCR, RPO30, and p32 genes indicated that LSDV strains circulating in north-central Vietnam are closely related to previously reported strains in Vietnam regions which bordered China and all LSDV strains were 100% identical. These results show the importance of continuous monitoring and characterization of circulating LSDV strains and are important for vaccine development for the control and eradication of LSD in Vietnam.


Subject(s)
Lumpy skin disease virus , Animals , Cattle , Lumpy skin disease virus/genetics , Phylogeny , Vietnam/epidemiology , Buffaloes , Disease Outbreaks/veterinary
2.
BMC Genomics ; 24(1): 793, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38124030

ABSTRACT

BACKGROUND: Heat shock proteins (HSPs) function as molecular chaperones with critical roles in chicken embryogenesis, immune response to infectious diseases, and response to various environmental stresses. However, little is known on HSP genes in chicken. In this study, to understand the roles of chicken HSPs, we performed genome-wide identification, expression, and functional analyses of the HSP family genes in chicken. RESULTS: A total of 76 HSP genes were identified in the chicken genome, which were further classified into eight distinct groups (I-VIII) based on phylogenetic tree analysis. The gene-structure analysis revealed that the members of each clade had the same or similar exon-intron structures. Chromosome mapping suggested that HSP genes were widely dispersed across the chicken genome, except in chromosomes 16, 18, 22, 25, 26, and 28-32, which lacked chicken HSP genes. On the other hand, the interactions among chicken HSPs were limited, indicating that the remaining functions of HSPs could be investigated in chicken. Moreover, KEGG pathway analysis showed that the HSP gene family was involved in the regulation of heat stress, apoptotic, intracellular signaling, and immune response pathways. Finally, RNA sequencing data revealed that, of the 76 chicken HSP genes, 46 were differentially expressed at 21 different growth stages in chicken embryos, and 72 were differentially expressed on post-infection day 3 in two indigenous Ri chicken lines infected with highly pathogenic avian influenza. CONCLUSIONS: This study provides significant insights into the potential functions of HSPs in chicken, including the regulation of apoptosis, heat stress, chaperone activity, intracellular signaling, and immune response to infectious diseases.


Subject(s)
Communicable Diseases , Influenza in Birds , Chick Embryo , Animals , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Chickens/genetics , Chickens/metabolism , Phylogeny , Influenza in Birds/genetics , Genomics
3.
Poult Sci ; 102(2): 102399, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36586293

ABSTRACT

Interleukin-1 receptor type 2 (IL1R2) is a decoy receptor for exogenous IL-1. However, its functional role in chicken immunity is poorly understood. Herein, chicken IL-1R2 (chIL-1R2) was identified and functionally characterized in vivo and in vitro. The chIL-1R2 coding sequence includes 1,236 nucleotides encoding 412 amino acids, is highly conserved, and has a close relationship with its mammalian counterpart. Its extracellular region has three Ig-like domains but no TIR domain for intracellular signaling. Using ELISA, the recombinant chIL-1R2 protein was demonstrated to specifically bind to the chicken IL-1ß. ChIL-1R2 mRNA expression was shown to be higher in the spleen, lung, kidney, small intestine, and liver. The expression of chIL-1R2 and chIL-1R1 was significantly upregulated in DF-1 cells treated with poly (I:C), but significantly downregulated in the presence of NF-κB, JNK, and MEK inhibitors, indicating that the NF-κB, JNK, and MEK signaling pathways are required for the transcriptional regulation of chIL-1R1 and chIL-1R2 expression. It is worth noting that while the p30 MAPK pathway was required for chIL-1R1 expression, it was not required for chIL-1R2 expression. Furthermore, chIL-1R2 expression increased as early as day 1, and then significantly decreased until day 3, while chIL-1R1 was dramatically upregulated in four organs of chickens infected with the highly pathogenic avian influenza virus (HPAIV). These findings indicate that chIL-1R1 and chIL-1R2 may play a crucial in innate and adaptive immune responses toward HPAIV infection. In summary the present study showed that chIL-1R2 binds to chIL-1ß antibody. ChIL-1R2 expression can be induced by a viral infection, and may be regulated through NF-κB/JNK/MEK-mediated signaling pathways.


Subject(s)
Chickens , NF-kappa B , Animals , Chickens/genetics , Interleukins , Mammals , Mitogen-Activated Protein Kinase Kinases , Receptors, Interleukin-1 , Receptors, Interleukin-1 Type II/metabolism
4.
Anim Biosci ; 36(4): 570-583, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36397707

ABSTRACT

OBJECTIVE: Fibroblast growth factors (FGFs) play critical roles in embryo development, and immune responses to infectious diseases. In this study, to investigate the roles of FGFs, we performed genome-wide identification, expression, and functional analyses of FGF family members in chickens. METHODS: Chicken FGFs genes were identified and analyzed by using bioinformatics approach. Expression profiles and Hierarchical cluster analysis of the FGFs genes in different chicken tissues were obtained from the genome-wide RNA-seq. RESULTS: A total of 20 FGF genes were identified in the chicken genome, which were classified into seven distinct groups (A-F) in the phylogenetic tree. Gene structure analysis revealed that members of the same clade had the same or similar exon-intron structure. Chromosome mapping suggested that FGF genes were widely dispersed across the chicken genome and were located on chromosomes 1, 4-6, 9-10, 13, 15, 28, and Z. In addition, the interactions among FGF proteins and between FGFs and mitogen­activated protein kinase (MAPK) proteins are limited, indicating that the remaining functions of FGF proteins should be further investigated in chickens. Kyoto encyclopedia of genes and genomes pathway analysis showed that FGF gene interacts with MAPK genes and are involved in stimulating signaling pathway and regulating immune responses. Furthermore, this study identified 15 differentially expressed genes (DEG) in 21 different growth stages during early chicken embryo development. RNA-sequencing data identified the DEG of FGFs on 1- and 3-days post infection in two indigenous Ri chicken lines infected with the highly pathogenic avian influenza virus H5N1 (HPAIV). Finally, all the genes examined through quantitative real-time polymerase chain reaction and RNA-Seq analyses showed similar responses to HPAIV infection in indigenous Ri chicken lines (R2 = 0.92- 0.95, p<0.01). CONCLUSION: This study provides significant insights into the potential functions of FGFs in chickens, including the regulation of MAPK signaling pathways and the immune response of chickens to HPAIV infections.

5.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-36478238

ABSTRACT

African swine fever (ASF) virus (ASFV) is responsible for one of the most severe swine diseases worldwide, with a morbidity rate of up to 100%; no vaccines or antiviral medicines are available against the virus. Exosomal miRNAs from individual cells can regulate the immune response to infectious diseases. In this study, pigs were infected with an ASFV Pig/HN/07 strain that was classified as acute form, and exosomal miRNA expression in the serum of infected pigs was analyzed using small RNA sequencing (small RNA-seq). Twenty-seven differentially expressed (DE) miRNAs were identified in the ASFV-infected pigs compared to that in the uninfected controls. Of these, 10 were upregulated and 17 were downregulated in the infected pigs. All DE miRNAs were analyzed using gene ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and the DE miRNAs were found to be highly involved in T-cell receptor signaling, cGMP-PKG signaling, Toll-like receptor, MAPK signaling, and mTOR signaling pathways. Furthermore, the Cytoscape network analysis identified the network of interactions between DE miRNAs and target genes. Finally, the transcription levels of four miRNA genes (ssc-miR-24-3p, ssc-miR-130b-3p, ssc-let-7a, and ssc-let-7c) were examined using quantitative real-time PCR (qRT-PCR) and were found to be consistent with the small RNA-seq data. These DE miRNAs were associated with cellular genes involved in the pathways related to immune response, virus-host interactions, and several viral genes. Overall, our findings provide an important reference and improve our understanding of ASF pathogenesis and the immune or protective responses during an acute infection in the host.


African swine fever is a viral disease caused by African swine fever virus (ASFV) which induces a big threat to the pig industry in the world. To date, there are no vaccines or antiviral medicines against the ASFV. Therefore, it is important to improve the understanding of the pathogenesis of ASFV and host­pathogen interaction using miRNA that may regulate genes related to the immune system. This study aimed to investigate the differentially expressed (DE) miRNA in serum-derived exosomes from African swine fever virus infected pigs. We successfully infected pigs with an ASFV Pig/HN/07 strain and identified the DE miRNAs in serum-derived exosomes using small RNA sequencing. Our results showed that total of 27 miRNAs were differentially expressed in serum-derived exosomes from ASFV-infected pigs. We analyzed the small RNA sequencing results using gene ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and found that most DE miRNA may regulate the expression of genes related with the immune response pathway (T-cell receptor signaling pathway, cGMP-PKG signaling pathway, PI3K-Akt signaling pathway, MAPK signaling pathway, etc.).


Subject(s)
African Swine Fever Virus , African Swine Fever , Exosomes , MicroRNAs , Swine Diseases , Swine , Animals , African Swine Fever Virus/genetics , African Swine Fever Virus/metabolism , African Swine Fever/genetics , African Swine Fever/prevention & control , Exosomes/genetics , Exosomes/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Sequence Analysis, RNA/veterinary
6.
Vet Med Sci ; 8(2): 607-609, 2022 03.
Article in English | MEDLINE | ID: mdl-34967133

ABSTRACT

BACKGROUND: African swine fever (ASF) is a highly contagious and deadly viral disease affecting domestic and wild pigs of all ages. African swine fever virus (ASFV) has spread rapidly through Eastern and Southeastern Asia first appearing in Vietnam in 2019. OBJECTIVES: Molecular typing of African swine fever virus (ASFV) in Vietnam has identified two principal variants circulating based on the sequencing of the intergenic region (IRG) between the I73R and I329L genes. Identification of additional genetic markers would enable higher resolution tracing of outbreaks within the country. METHODS: Sequence analysis suggested the IRG between the A179L and A137R genes may also exhibit variability, PCR primers were designed and samples from Vietnam were subject to Sanger sequencing. RESULTS: We developed a novel method for sub-grouping of ASFV based on the IRG between the A179L and A137R genes of ASFV. Our results demonstrated that the finding of the insertion or deletion of an 11- nucleotide sequence (GATACAATTGT) between the A179L-A137R genes. CONCLUSIONS: The sub-grouping method may provide useful insights into the evolution of genotype II ASFV as well as providing evidence of a relationship between geographically separated outbreaks.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine Diseases , African Swine Fever/epidemiology , African Swine Fever Virus/genetics , Animals , DNA, Intergenic/genetics , Genotype , Phylogeny , Sequence Analysis, DNA/veterinary , Sus scrofa/genetics , Swine
7.
Open Vet J ; 12(6): 1027-1034, 2022.
Article in English | MEDLINE | ID: mdl-36650869

ABSTRACT

Background: African swine fever (ASF) is one of the most important diseases in pigs because of its effects on all ages and breeds. To date, commercial vaccines and drugs for the prevention of ASF are lacking in the market and the survival of African swine fever virus (ASFV) in various environmental, farm, and or feed matrices has allowed the virus to remain, causing new outbreaks in the pig population. Besides biosecurity and animal husbandry management practices, the improvement of the host immune responses is critical to control, managing, and preventing ASF. Aim: In this study, we investigated the protective role of ß-glucan against ASFV infection using a porcine alveolar macrophage (PAM) model. Methods: The effects of ß-glucan on cell proliferation were evaluated by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The potential effects of ß-glucan against a field ASFV strain isolated in Vietnam were further examined by real-time PCR and hemadsorption assays. The interferon (IFN)-α and interleukin (IL)-6 protein production induced by ß-glucan was determined using a sandwich enzyme-linked immunosorbent assay. Results: Our results demonstrated that the ß-glucan additive possessed an immune stimulus factor against ASFV. Specifically, protection of PAMs against ASFV infection in vitro was observed at 12 hours (p < 0.05) at the tested doses (30 and 50 µg/ml) as induced by incubation with ß-glucan for 2 hours. These effects remained until 24 hours after post-infection. Additionally, at a high dose (50 µg/ml), pre-treatment with the ß-glucan statistically increased the expression levels of IFNα and IL-6 when compared to untreated groups or only ASFV infection. Conclusion: Together, these findings indicated that the ß-glucan may protect the host against ASFV infection via the multiple cellular immune mechanisms.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine Diseases , beta-Glucans , Swine , Animals , African Swine Fever Virus/genetics , African Swine Fever/prevention & control , beta-Glucans/pharmacology , beta-Glucans/metabolism , Real-Time Polymerase Chain Reaction/veterinary , Disease Outbreaks , Swine Diseases/epidemiology
8.
Open Vet J ; 11(3): 346-355, 2021.
Article in English | MEDLINE | ID: mdl-34722195

ABSTRACT

Background: African swine fever (ASF) is an important disease affecting swine and has a significant economic loss in both the developed and developing world. Aim: In this study, we evaluated the potential effects of medium-chain fatty acids (MCFAs) in individual and synergistic forms to prevent and/or reduce ASF virus (ASFV) infection using in vitro feed model. Methods: The cytotoxicity of MCFAs on porcine alveolar macrophages cells was evaluated by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The potential effects of MCFAs, including C8 (caprylic acid), C8-C6-C10 (caprylic acid-caproic acid-capric acid; 1:1:1 ratio) and C8-C10-C12 (caprylic acid-capric acid-lauric acid; 1:1:1 ratio) against a field ASFV strain isolated in the capital Hanoi of Vietnam, were further examined by real-time PCR and haemadsorption assays in in vitro feed model. Results: Our results indicated that all tested products do not induce cytotoxicity at the dose of 100 µg/ml and are suitable for further in vitro examination. These products have shown a strong antiviral effect against ASFV infectivity at doses of 0.375% and 0.5%. Interestingly, the synergistic MCFAs have shown clearly their potential activities against ASFV in which at a lower dose of 0.25%, pre-treatment with product two and three induced significant increases at the level of Cq value when compared to positive control and/or product 1 (p < 0.05). However, the viral titre was not changed after 24 hours post-inoculation when compared to positive control. Our findings suggested that all tested products, both individual and synergistic forms of MCFAs, have possessed a strong anti-ASFV effect, and this effect is dose-dependence in in vitro feed model. Additionally, synergistic effects of MCFAs are more effective against ASFV when compared to individual forms. Conclusion: Together, the findings in this study indicate that MCFAs, both individual and synergistic forms, inhibit against a field ASFV strain in the feed model, which may support minimizing the risk of ASF transmission in the pig population. Further studies focusing on in vivo anti-ASFV effects of MCFAs are important to bring new insight into the mode of ASFV-reduced action by these compounds in swine feed.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine Diseases , African Swine Fever/epidemiology , African Swine Fever/prevention & control , Animals , Fatty Acids , Macrophages , Swine , Vietnam/epidemiology
9.
Transbound Emerg Dis ; 68(3): 977-980, 2021 May.
Article in English | MEDLINE | ID: mdl-33548101

ABSTRACT

Lumpy skin disease (LSD) is a transboundary, systemic, viral disease of cattle. The first outbreaks of LSD were reported in Lang Son Province of Vietnam (bordered to China), and an official document has been submitted to OIE on 1 November 2020. Here, we described first the genetic profiles of this pathogen based on four well-known marker regions. The LSD virus isolated in these first outbreaks was 100% identical to viruses isolated in China (2019) based on the p32 and RP030 genes. Additionally, it is very close to the virus isolated in Russia (2017) based on the p32, RP030, thymidine kinase and ORF103 genes (100%, 99.01%, 99.08% and 99.47% identities). This finding is new, and a success in LSD virus isolation using MDBK cells from first outbreaks is important for vaccine development to control and eradicate LSD in Vietnam.


Subject(s)
Disease Outbreaks/veterinary , Lumpy Skin Disease/epidemiology , Lumpy skin disease virus/isolation & purification , Animals , Cattle , Lumpy Skin Disease/virology , Vietnam/epidemiology
10.
Transbound Emerg Dis ; 68(5): 2693-2695, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33471420

ABSTRACT

Since African swine fever virus (ASFV) introduction into Vietnam in 2019, most ASFV strains detected in this country belong to the p72 genotype II and intergenic region (IGR) II variant. Further investigation of the intergenic region of ASFVs isolated in the Capital Hanoi region showed two different variants, IGR I and IGR II, which were located between the I73R and I329L genes of the p72 genotype II ASFV strains. This finding suggests co-circulation of two ASFV variants in the domestic pig population in Vietnam.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine Diseases , African Swine Fever/epidemiology , African Swine Fever Virus/genetics , Animals , DNA, Intergenic/genetics , Genotype , Phylogeny , Sequence Analysis, DNA/veterinary , Swine , Vietnam/epidemiology
11.
Transbound Emerg Dis ; 68(3): 1697-1699, 2021 May.
Article in English | MEDLINE | ID: mdl-32939964

ABSTRACT

Since the first outbreak of African swine fever virus (ASFV) in China in 2018, the disease has spread to Mongolia, Vietnam, Cambodia, Korea, Laos, Myanmar, Philippines, Timor-Leste, Indonesia and Papua New Guinea. ASFV was officially reported in Vietnam on 19 February 2019. The continued spread of ASFV has occurred in the whole country within 7 months. The phylogenetic analysis showed that ASFVs isolated in the North Central region of Vietnam belong to genotype II and serotype 8. Additionally, tandem repeat sequence (TRS) studies indicated that these ASFVs are very close to ASFV strains detected in China and Belgium, 2018, and differ from ASFV isolated in Georgia in 2007.


Subject(s)
African Swine Fever Virus/genetics , Genome, Viral , Genotype , Phylogeny , Serogroup , African Swine Fever Virus/classification , Genetic Markers , Tandem Repeat Sequences , Vietnam
12.
Dev Comp Immunol ; 110: 103729, 2020 09.
Article in English | MEDLINE | ID: mdl-32387556

ABSTRACT

Interleukins (ILs) regulate cell surface antigens known as activation markers, which have distinct functional roles. However, the regulation of major histocompatibility complex (MHC) class I, MHC class II, and related genes by cytokines in chickens is not well understood. In the present study, we evaluated the influence of certain recently discovered chicken interleukins-i.e., IL-11, IL-12B, IL-17A, IL-17B, IL-26, and IL-34-on the expression and regulation of genes related to MHC class I, MHC class II, and the associated proteins in an HD11 chicken macrophage cell line. We used quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunocytochemical, and flow cytometric analyses to assess dose- and time-dependent expression in the HD11 cell line and found that the ILs induced MHC class I, MHC class II, and associated protein. As NF-κB is actively involved in cell activation and is constitutively activated in many immune cells, we also determined whether NF-κB regulates MHC class I, MHC class II, and related gene expression in the HD11 cell line. The NF-κB inhibitor sulfasalazine (Sz) dose-dependently inhibited MHC class I and MHC class II in the HD11 cell line. Sz also downregulated the expression of MHC class I, MHC class II, and the associated proteins in the IL-induced HD11 cell line. The expression of MHC class I, MHC class II, and associated genes was accompanied by the Sz-sensitive degradation of the p65 (RelA) and p50 subunits of NF-κB and IκBα. Our results indicate that the different effects of each IL on the expression of genes related to MHC class I, MHC class II, and the associated proteins are involved with the regulation of the dose and duration of antigenic peptide presentation and, thus, also influence Th1, Th2, and Th17 production.


Subject(s)
Avian Proteins/metabolism , Chickens/immunology , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class I/metabolism , Interleukins/metabolism , Macrophages/immunology , Th1 Cells/immunology , Th17 Cells/immunology , Th2 Cells/immunology , Animals , Cell Line , Cytokines/metabolism , Gene Expression Regulation , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class II/genetics , NF-kappa B/metabolism , Signal Transduction
13.
Asian-Australas J Anim Sci ; 33(10): 1683-1690, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32054190

ABSTRACT

OBJECTIVE: The rapid and reliable detection of the African swine fever virus (ASFV) plays an important role in emergency control and preventive measures of ASF. Some methods have been recommended by FAO/OIE to detect ASFV in clinical samples, including realtime polymerase chain reaction (PCR). However, mismatches in primer and probe binding regions may cause a false-negative result. Here, a slight modification in probe sequence has been conducted to improve the qualification of real-time PCR based on World Organization for Animal Health (OIE) protocol for accurate detection of ASFV in field samples in Vietnam. METHODS: Seven positive confirmed samples (four samples have no mismatch, and three samples contained one mutation in probe binding sites) were used to establish novel real-time PCR with slightly modified probe (Y = C or T) in comparison with original probe recommended by OIE. RESULTS: Both real-time PCRs using the OIE-recommended probe and novel modified probe can detect ASFV in clinical samples without mismatch in probe binding site. A high correlation of cycle quantification (Cq) values was observed in which Cq values obtained from both probes arranged from 22 to 25, suggesting that modified probe sequence does not impede the qualification of real-time PCR to detect ASFV in clinical samples. However, the samples with one mutation in probe binding sites were ASFV negative with OIE recommended probe but positive with our modified probe (Cq value ranked between 33.12-35.78). CONCLUSION: We demonstrated for the first time that a mismatch in probe binding regions caused a false negative result by OIE recommended real-time PCR, and a slightly modified probe is required to enhance the sensitivity and obtain an ASF accurate diagnosis in field samples in Vietnam.

14.
Clin Exp Vaccine Res ; 9(1): 26-39, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32095438

ABSTRACT

PURPOSE: To date, many kinds of classical swine fever (CSF) vaccines have been developed to protect against this disease. However, the efficacy of these vaccines to protect the pig against field CSF strains needs to be considered, based on circulating strains of classical swine fever virus (CSFV). MATERIALS AND METHODS: Recombinant E2-CSFV protein produced by baculovirus/insect cell system was analyzed by western blots and immunoperoxidase monolayer assay. The effect of CSFV-E2 subunit vaccines was evaluated in experimental pigs with three genotypes of CSFV challenge. Anti-E2 specific and neutralizing antibodies in experimental pigs were analyzed by blocking enzyme-linked immunosorbent assay and neutralization peroxidize-linked assay. RESULTS: The data showed that CSFV VN91-E2 subunit vaccine provided clinical protection in pigs against three different genotypes of CSFV without noticeable clinical signs, symptoms, and mortality. In addition, no CSFV was isolated from the spleen of the vaccinated pigs. However, the unvaccinated pigs exhibited high clinical scores and the successful virus isolation from spleen. These results showed that the E2-specific and neutralizing antibodies induced by VN91-E2 antigen appeared at day 24 after first boost and a significant increase was observed at day 28 (p<0.01). This response reached a peak at day 35 and continued until day 63 when compared to controls. Importantly, VN91-E2 induced E2-specific and neutralizing antibodies protected experimental pigs against high virulence of CSFVs circulating in Vietnam, including genotype 1.1, 2.1, and 2.2. CONCLUSION: These findings also suggested that CSFV VN91-E2 subunit vaccine could be a promising vaccine candidate for the control and prevention of CSFV in Vietnam.

SELECTION OF CITATIONS
SEARCH DETAIL
...